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An Explicit Quasi-Newton Update for 
Sparse Optimization Calculations 

By Angelo Lucia* 

Abstract. A new quasi-Newton updating formula for sparse optimization calculations is 
presented. It makes combined use of a simple strategy for fixing symmetry and a Schubert 
correction to the upper triangle of a permuted Hessian approximation. Interesting properties 
of this new update are that it is closed form and that it does not satisfy the secant condition at 
every iteration of the calculations. Some numerical results are given that show that this update 
compares favorably with the sparse PSB update and appears to have a superlinear rate of 
convergence. 

1. Introduction. In sparse minimization calculations we are concerned with finding 
the least value of a twice continuously differentiable functional, f: Rn -* R, whose 
second-derivative matrix is sparse. Here x E R' denotes a vector of unknown 
variables. It is assumed that the gradient of f, denoted by g, is available and that the 
sparsity pattern of the Hessian matrix, V 2f(x), is fixed throughout the calculations. 

When n, the number of variables, is large it is often necessary to exploit any 
sparsity in the Hessian matrix of f in order to save storage and computation. To date 
there are two quasi-Newton updates for sparse optimization calculations, the sparse 
Powell-symmetric-Broyden (PSB) update suggested by Toint [8] and Marwil [5] and 
the sparse Broyden-Fletcher-Goldfarb-Shanno (BFGS) update proposed by Shanno 

[7]. 
To briefly describe these updates we let B and B denote successive approximations 

to the Hessian matrix, x and x- denote successive approximations to a local 
minimizer of f, and we define s = x- -x and y = g(x-) - g(x). We also let I be the 
set of index pairs for which the elements of the true Hessian matrix are known to be 
zero and we let 11 11 F denote the Frobenius matrix norm. 

It is well known (see, for example, Toint [8]) that the sparse PSB update solves the 
variational problem 

minlIB- BIIF 

subject to 

(1) Bs =y, 

(2) B = B' 
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and 

(3) bij = 0, Rl(i, j) EI 

where Eqs. (1), (2) and (3) are the secant or quasi-Newton condition, symmetry and 
sparsity requirements, respectively. 

To update B in this manner requires the solution of a system of linear equations in 
the Lagrangian multipliers for the secant condition, written as 

(4) QX= r=y - Bs. 

This set of equations, whose coefficient matrix has the same sparsity pattern as that 
of the true Hessian matrix, is solved for A and then the nonzero elements of B are 
updated by 

bij = bij + (A1si + Ais1), V(i, j) i I. 

This gives a sparse, symmetric matrix B that satisfies the secant condition. The 
reader is referred to the paper by Toint [8] for the details of the variational 
derivation of the sparse PSB. 

The only other successful quasi-Newton update for sparse optimization calcula- 
tions is the sparse BFGS update recently suggested by Shanno [7]. Here we first 
calculate a full update to B by the rule 

yyB Bss'B 
y's s 'Bs9 

which is the usual BFGS formula. Then the matrix B is calculated by solving the 
variational problem min B - B* I IF subject to (1), (2) and (3). Like the sparse PSB 
update, the sparse BFGS requires the solution of a system of linear equations to 
calculate an update to B. In fact, the only difference between (4) and Shanno's 
system of equations is the right-hand side vector r. That is, the vector r in the sparse 
PSB update depends on the error in the qausi-Newton condition, whereas in 
Shanno's method it depends on the matrix B*. The net result is again a sparse, 
symmetric matrix B that satisfies the secant condition. The reader is referred to the 
paper by Shanno [7] for the details of the technique of making any nonsparse update 
sparse, and, in particular, the sparse BFGS update. 

While these updates give reasonably good numerical results, the fact is that they 
require the solution of an associated linear system at each iteration. This can make 
them computationally expensive over the course of the minimization calculations. 
Furthermore, the linear system for either method is subject to ill-conditioning 
problems because of the way the Q matrix is constructed. Instead we prefer to 
update B in an explicit manner, provided this closed form update gives good results. 
Such a closed form update is the subject of this paper. 

The rest of this paper is organized in the following way. In Section 2 we present a 
closed form, sparse, symmetric quasi-Newton updating formula. This update makes 
combined use of the Schubert [6] update, a simple similarity transformation and a 
different way of fixing symmetry. An interesting property of the new update, which 
is shared by only one other quasi-Newton update (see Dennis and Schnabel [2]), is 
that it does not satisfy the secant condition at each iteration. It does however satisfy 
this condition in the limit provided the sequence of Hessian approximations con- 
verges. In Section 3 we present some numerical results. We compare the new 
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updating formula to the sparse PSB and sparse BFGS updates. We find that the new 
update formula is comparable to the sparse PSB update. We also present numerical 
results that measure the error in the secant condition during the course of the 
minimization calculations and yet other results that measure the Dennis and More 

[1] characterization of superlinear convergence. The latter results suggest that the 
new updating formula may possess a superlinear rate of convergence. Finally, in 
Section 4, we make some closing remarks. 

2. A Closed Form Update. In this section we describe a new, closed form update 
that makes use of the Schubert [6] update, a simple similarity transformation, and a 
straightforward way of fixing symmetry. 

To begin, we define the vector S to be a permutation of the integers 1, 2,... , n 
such that I S TI I 

' 
I ST2 I 

. * * * < I S,, I . This is simply the integer permutation defined 
by arranging the components of s in order of their ascending absolute value. 

Next we permute the vectors s and y and the matrix B according to 7r. In 

particular, we define 

v _Ps) ( ke s) W = P(Y) = eke ky 

and 

Az=P(B) 

= 

( ekek)B 

em 

Now we calculate a Schubert [6] correction to the upper triangle of A, denoted Au. 
1This gives 

n 

A = A + (vif vi ej[w -A v ]eivi', 

where vi is the vector, formed from v, that reflects the sparsity pattern of Au, the 
superscript + denotes the pseudoinverse and ' denotes transposition. We interpret 

AU as the least change correction (see, Dennis and Schnabel [2]) to Au subject to the 
linear constraint A4v w - (A'" - diag(A u))v. 

To fix symmetry we simply set dai = cij for (i, j) X I andj > i. This gives 
n 

A -A + 2 (v'v,) e'[w -Av]T-1(eivi'), 
i=lI 

where T1- is the linear transformation that accomplishes this symmetry operation. 
Finally, to recover B, we apply the inverse of P. Hence, 

n 

(5) B = B + (vi'vi ) +e i [ - Av ] ( T ? P) ) ( eivi ), 
i=lI 

which is the desired result, a closed form, sparse and symmetric updating formula. 
Furthermore, besides being explicit, the new update has another interesting 

property. It is the only published quasi-Newton formula, other than the update 
suggested by Dennis and Schnabel [2, p. 455], that does not satisfy the secant 

condition at each iteration of the calculations. To see this, observe that the linear 

constraint that was used in calculating a Schubert correction to A14 states simply that 

(A, + Au-diag(A14))v=w. 
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This clearly implies that Av 7 w, or equivalently that Bs ? y, when Au # Au. 
However, for the case when the sequence of Hessian approximations converges to 

say B*, we have that lim Au lim A = A* and in the limit 

(A* + A*' - diag(A*)) v = A*v = w, 

which, in turn, implies that B*s = y. So we see that although the new update does 
not satisfy the secant equation at each iteration of the calculations, under the 
assumption that the Hessian approximations converge to a finite limit, B*s will 
equal y. 

In the next section we present some numerical results for this new updating 
formula. 

3. Some Numerical Results. To test the new update, we solved six benchmark 
problems that appear in the sparse unconstrained literature. The test problems were 
the quadratic operations research (QOR), general operations research (GOR), 
pseudo-penalty (PSP) and chained Rosenbrock (CR) functions defined in Toint [9] 
and the tridiagonal (TRIDIA) and extended Rosenbrock (EROSEN) functions in 
the paper by Shanno [7]. 

For all the numerical tests we used the sparse unconstrained minimization 
algorithm given in Toint [9] with one modification; we did not use a Hebden [4] 
correction to B to guarantee positive definiteness at each iteration. Instead, we used 
the Powell dogleg strategy (see, for example, Toint [9]) which can safely handle 
directions of negative curvature of the local quadratic approximations. The starting 
point used in step 1 of the Toint algorithm was the same as the starting point used in 
the paper from which the particular problem statement was taken. Also, values of 

AO 1 and e = 10-5 were used in step 1 for all problems. Step 3 of the algorithm 
was implemented using the Yale Sparse Matrix Package-The Symmetric Codes 
(YSMPS) [3], which calculates a U'DU decomposition of B and locally optimizes the 
arithmetic operations count for the Gaussian elimination process. Finally, all com- 
puter runs in this section were done on a CDC Cyber 175 computer using single- 
precision arithmetic unless specified otherwise. 

We solved the six forementioned problems with the sparse PSB (SPSB) method, 
sparse BFGS (SBFGS) update, and the new updating formula. Table 1 shows the 
numerical results. 

TABLE 1 

Problem size no. of function calls 
SPSB SBFGS new update 

QOR 50 22 (3.004) 35 (4.397) 27 (2.910) 
GOR 50 50(3.986) > 200 70 (3.914) 

PSP 50 202 (12.395) > 300 238 (10.494) 
CR 25 70 (1.375) 89 (1.920) 85 (1.375) 

TRIDIA 30 17 (0.843) 22 (1.052) 18 (0.785) 
EROSEN 5 247 (1.238) 131 (0.994) > 300 

The symbol > nnn is used to indicate that the computer run for this problem was 
terminated after exactly nnn function calls without reaching the required accuracy. 
The numbers in parentheses are the execution times in CPU seconds. 
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With regard to the new updating formula, we also measured the error in the secant 
condition, II y - Bs 112/l s 112, and the Dennis and More [1] characterization of 
superlinear convergence, II(B - V 2f(X*))S 11 2/Il S 11 2, toward the end of the calcula- 
tions for all problems in Table 1. Results for the chained Rosenbrock and tridiago- 
nal functions are shown in Tables 2 and 3. We remark that the asymptotic behavior 
of the characterization of superlinear convergence must be measured using double- 
precision arithmetic because it involves a division by III S 2. (This is equivalent to 
quadruple or extended precision on IBM machines.) 

TABLE 2 
Asymptotic behavior of the error in the secant condition and the 

characterization of superlinear convergence for the CR function 

iteration no. Ily - Bsll2/11Sl12 Il(B - v2f(x*))S 11 2/1sl 11 2 

80 2.01 X 10+1 2.22 X 10+1 
81 4.17 1.22 X 10+1 
82 9.65 X 10-1 1.18 
83 1.18 X 10-1 1.15 X 10-1 
84 4.31 X 10-2 1.08 X 10-2 
85 3.94 X 10-3 7.65 X 10-3 

TABLE 3 
Asymptotic behavior of the error in the secant condition and the 

characterization of superlinear convergence for the TRIDIA function 

iteration no. Ily - Bsll2/11Sl12 Il(B - v2f(x*))S 11 2/ll S l2 

9 6.67 X 10+1 9.99 x 10+ 
12 8.02 X 10+1 1.65 X 10+1 
15 3.83 X 10-1 6.28 
16 2.96 X 10-2 3.45 X 10-1 
17 3.04 X 10-3 4.61 X 10-2 

4. Conclusions. Using a simple symmetry strategy, an elementary similarity 
transformation and the Schubert update, we have developed a new closed form 
quasi-Newton update for sparse optimization calculations. In doing so, we have 
avoided the need to iteratively solve a sparse symmetric linear system in order to 
update the Hessian approximations as in the sparse PSB and the sparse BFGS 
methods. We have also precluded any ill-conditioning problems associated with 
these linear systems. We remark that the permutation is necessary for numerical 
stability because without it we obtained very poor Hessian approximations. Ap- 
parently, the permutation ensures that each term (vi'vi)+ is as small as possible, in the 
face of the given symmetry strategy, and thereby does not cause inordinate growth 
of the approximating matrices. 

We have solved six benchmark problems using this closed form updating formula 
and compared our results with the sparse PSB and sparse BFGS updates. Based on 
these results we find that the closed form update is comparable to the sparse PSB 
method. It should be noted that the attractiveness of the proposed method compared 
to the sparse PSB depends on the relative cost of permuting an n vector with that of 
solving an n X n sparse, symmetric linear system. 
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An interesting property of the new updating formula is that it does not satisfy the 
secant condition at each iteration of the calculations. However, we have shown that, 
under the assumption that the Hessian approximations converge to a finite limit, the 
new update will satisfy the secant condition in the limit. Our numerical results verify 
this claim. 

We have also measured the asymptotic behavior of the characterization of 
superlinear convergence. These numerical results show that we get a close tracking of 
the Newton direction toward the end of the calculations. This suggests that the rate 
of convergence of the new update may be Q-superlinear. 

In summary, we note that our numerical results seem to indicate that a fast rate of 
convergence can be obtained without requiring the secant condition to be satisfied at 
every iteration of the calculations. This is a new result. 

Finally, there is a simple and interesting Gauss-Seidel type variant of the new 
updating formula. If we replace Au by Au in the linear constraint of the variational 
calculations, then that constraint becomes the usual secant condition and the 
updating formula is then given by 

n 

(6) B = B+ E (v,vi) e'[w- (-(A + -diag(Ai))v](To P) Y (eiv;). 
i=1 

This updating formula is still a closed form update and does not require any 
additional work. Furthermore, it uses updated information as soon as it is available. 
We remark that we actually discovered Eq. (6) before we discovered Eq. (5), but we 
have not tested it to any extent. 
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